
Maple, C and Assembly Language – Performance Comparison

Milorad Pop-Tošić, Igor Skender

Department of Computer Engineering

School of Electrical Engineering, University of Belgrade, Serbia

poptosic@gmail.com, igor.skender@gmail.com

Abstract

We show how to utilize Maple external calling mechanism to speed up function execution by coding
them in C and assembly language. Techniques were demonstrated on Jones’ algorithm for finding the
n-th prime number.

Introduction

In this article, it will be shown how to utilize Maple external calling mechanism in order to solve real
problems faster, by calling external functions written in C and assembly language. Maple
define_external function was used to call routines written in C and assembly language
MASM, from DLL libraries [3,4]. These techniques were demonstrated on the example of Jones’
algorithm, an algorithm for finding the n-th prime number [1, 2]. Furthermore, we made
measurements and comparison of execution time for different implementations of the algorithm:
assembly language, C language, and Maple procedures.

Jones algorithm

Jones’ algorithm for finding the n-th prime number states [1, 2]:

Let P n be the n-th prime number. Formula P n , which generates the n-th prime number for given
n, is given as:

Pn =>
i = 0

n2

1N >
j = 0

i

r jN1 !2, j Nn

where r a, b is a function that returns the remainder of division of number a by number b, where
r a, 0 h a and N is a function defined as:
aNb = aKb if a R b else aNb = 0

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

Function P returns the array of prime numbers P 1 = 2, P 2 = 3, P 3 = 5,...
There is a function in Maple, ithprime(n), which returns values of P from a database. Our goal is
to illustrate what can be achieved by connecting Maple to C and assembly language, on the example
of Jones’ algorithm for finding the function P.

The code for the procedure in Maple for finding P function using Jones’ algorithm is given below:

restart:
M := proc (x::integer, y::integer)
 if x<y then 0;
 else x-y;
 fi;
end:
JonesM := proc (n::integer)
 local m,s,i,p,j,f,k;
 m := n*n;
 s := 1;
 for i from 1 to m do
 p:=0;
 for j from 1 to i do
 f := 1;
 for k from 1 to (j-1) do
 f := f*k*k;
 f := f mod j;
 od;
 p := p+f;
 od;
 s := s+ M(1, M(p,n));
 od;
RETURN (s);
end:

The code in C for finding P function using Jones’ algorithm is given below:

Jones.c

#define M(x,y) ((x)>(y) ? ((x)-(y)):(0))

int i,j,k,n,m,p,f,s;

int Jones(int n) {
 for (m=n*n, s=i=1; i<=m; i++) {

for (p=0, j=1; j<=i; j++) {
 for (f=k=1; k<j; k++) { f=f*k*k; f%=j; }

O
O

O

O
O

O

 p+=f;
}
s+=M(1, M(p,n));

 }
 return s;

}

In order to call this code from within Maple it should, first, be compiled into a DLL (Dynamic
Linking Library). A compiler from Microsoft Visual Studio .NET was chosen at this place. We
compile the code by issuing the following command:

 > cl.exe -LD -Gy -Gz JonesC.c -link /export:Jones

It is essential to include keyword /export: followed by the name of the function to be exported and
used from within Maple. Note that any other C compiler can be used here as long as it produces a
DLL with stdcall calling convention, and exports symbol Jones.

From this point onwards, compiled DLL library JonesC.dll, is connected to Maple by using
define_external function, as follows:

JonesC:=define_external(
 'Jones',
 'n'::integer[4],
 'RETURN'::integer[4],
 'LIB'="./JonesC.dll"
):

It should be noted that Maple can also call functions from UNIX .so libraries, which have similar
function as DLL libraries in Windows.

From this point onwards, the call JonesC() from within Maple appears to be exactly the same as a
call to a built-in Maple function, although the function Jones from the DLL library gets called.

The procedure in assembly language for finding P function using Jones’ algorithm is given below [7]:

JonesASM.asm

.586

.model flat, stdcall

.code
LibMain proc h:DWORD, r:DWORD, u:DWORD
 mov eax, 1
 ret
LibMain Endp
 ; s=ax j=bx k=cx p=si i=di
Jones proc n:DWORD
 LOCAL m:DWORD
 LOCAL s:DWORD
 push ebx
 push ecx
 push edx
 mov eax, n

 mul eax
 mov m, eax
 mov eax, 1
 mov s, eax
 mov edi, eax
loop1:
 cmp edi, m
 jg l0
 mov ebx, 1
 xor esi, esi
loop2:
 cmp ebx, edi
 jg l1
 mov eax, 1
 mov ecx, eax
loop3:
 cmp ecx, ebx
 jge l2
 mul ecx
 mul ecx
 div ebx
 mov eax, edx
 inc ecx
 jmp loop3
l2:
 add esi, eax
 inc ebx
 jmp loop2
l1:
 cmp esi, n
 jg skip
 inc s
skip:
 inc edi
 jmp loop1
l0:
 pop edx
 pop ecx
 pop ebx

 mov eax, s
ret

Jones endp

End LibMain

Apart form this file, one more is needed. It lists functions, which are to be exported from the DLL,
which is, in this case, the function Jones.

JonesASM.def

LIBRARY JonesASM
EXPORTS Jones

Compiling and linking the DLL library, using MASM is done by issuing:

 > \masm32\bin\ml /c /coff JonesASM.asm
 > \masm32\bin\Link /SUBSYSTEM:WINDOWS /DLL /DEF:JonesASM.def JonesASM.obj

O

O

O

O

O

O

(4.1)

(4.3)

(3.2)

(4.2)

O
O

(3.1)

Generated library JonesASM.dll is connected to Maple, as follows:

JonesASM:=define_external(
 'Jones',
 'n'::integer[4],
 'RETURN'::integer[4],
 'LIB'="./JonesASM.dll"
):

The three shown implementations of function Jones are called from within Maple by issuing the
following commands, respectively:

n := 30;
n := 30

JonesM(n); # Call to Maple procedure
JonesC(n); # Call to function in C DLL
JonesASM(n); # Call to function in ASM DLL

113
113
113

Conclusion

Measurements and comparison of execution time for Jones’ algorithm were made for all three
presented implementations. To accomplish that, we used Maple time() function which returns total
processor time used for executing expression. We used this function to calculate execution time for
the three solutions, for n 2 1 ..50 , by issuing the following commands:

time(JonesM(n)); # Maple procedure execution
115.874

time(JonesC(n)); # C function execution time
1.907

time(JonesASM(n)); # ASM function execution time
1.514

Based on measured values, the chart that shows execution times for three presented implementations
was created.

It can be observed from this chart that C and assembly language solutions have considerably better
performance, compared to Maple procedures. For n = 50 procedure in Maple completes in about half
an hour, while the same result, by applying C and assembly language solutions, is computed in the
matter of seconds. The function that describes the time of execution of Maple procedures rises more
sharply, so the differences are even more stressed for larger n.
From what is said can be concluded that Maple procedures are rather slow solution for problems
which contain large number of iterations, primarily because Maple code is interpreted, and not
compiled. In such cases, it is much more efficient to program in C, or even assembly language.

The chart that follows shows the comparison of execution time for procedures written in assembly
language and C. We can observe performance advantage of assembly language over C, which
becomes more stressed, as n gets larger. For instance, assembly language implementation is about
25 % faster for n = 50. For that reason, putting in more effort in producing assembly language code,
especially for loops repeating billion times or more. For loops repeating couple of million times,
there is a minor difference between assembly language and C in terms of execution time, so it is
simpler to write such a function in C.

Acknowledgement

This article is based on a semester work in course Practicum of Computer Tools in Mathematics,
which is taught in the 5th semester of Computer Engineering program on the Faculty of Electrical
Engineering, University of Belgrade. We wish to thank assistant professor Dr Branko Malešević for
acquainting us with this topic.

References

[1] James P. Jones: Formula for the nth prime number,
Canadian Mathematical Bulletin 18, (1975), pp. 433--434.

[2] James P. Jones; Daihachiro Sato; Hideo Wada; Douglas Wiens:
Diophantine Representation of the Set of Prime Numbers,
The American Mathematical Monthly Vol. 83, No. 6 (Jun., 1976), pp. 449-464

[3] Aleksandrs Mihailovs: Writing DLL in Assembly Language for External Calling in Maple -
Technical Report,
Department of Mathematics, Tennessee Technological University
TR No. 2004-5, July 2004, http://www.math.tntech.edu/techreports/TR_2004_5.pdf

[4] Aleksandrs Mihailovs: Writing DLL in Assembly Language for External Calling in Maple,
http://www.maplesoft.com/applications/app_center_view.aspx?AID=1295&CID=9&SCID=63

[5] Michael Monagan: Programming in Maple: The Basics,
Institut für Wissenschaftliches Rechnen ETH-Zentrum, CH-8092 Zürich, Switzerland

[6] David A. Patterson, John L. Henessy: Computer Organization and Design: The
Hardware/Software Interface,

Morgan Kaufmann; 3rd edition

[7] Branko Malešević: Examples for the special course – Algorithms in C, (according to the MSc
course of Department of Algebra and Mathematical Logic, Faculty of Mathematics, Belgrade 1995).

[8] Veljko Milutinović: The Best Method for Presentation of Research Results,
Department of Computer Engineering, School of Electrical Engineering, University of Belgrade

Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the
author are responsible for any errors contained within and are not liable for any damages resulting
from the use of this material. This application is intended for non-commercial, non-profit use only.
Contact the author for permission if you wish to use this application in for-profit activities.

